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Abstract. There is a lack of a representative set of test problems for comparing global optimization
methods. To remedy this a classification of essentially unconstrained global optimization problems
into unimodal, easy, moderately difficult, and difficult problems is proposed. The problem features
giving this classification are the chance to miss the region of attraction of the global minimum,
embeddedness of the global minimum, and the number of minimizers. The classification of some
often used test problems are given and it is recognized that most of them are easy and some even
unimodal. Global optimization solution techniques treated are global, local, and adaptive search and
their use for tackling different classes of problems is discussed. The problem of fair comparison of
methods is then adressed. Further possible components of a general global optimization tool based
on the problem classes and solution techniques is presented.
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1. Introduction

In this paper we discuss essentially unconstrained global optimization problems,
i.e., findf̂ ∗ = f (x̂∗), wherex̂∗ ∈ A ⊂ Rn so that|f̂ ∗ − f ∗| 6 ε, wheref ∗ is the
global minimum obtained in the interior ofA. The regionA is assumed to be either
a box or some other region easy to sample. Our only requirement on the problem
is thatf (x) can be computed for anyx ∈ A.

The methods we consider for solving such problems are those containing some
probabilistic technique, which explore the search regionA by evaluatingf for
points sampled inA. Based on this minimal requirement, we are able to classify
problems into degrees of difficulty. In practice, other information may be available
and may of course be utilized in solving the problem at hand, and thus can make a
given problem easier. The word minimum in the text that follows normally means
the minimum value but sometimes also the pair (minimizer, minimum), and refers
to any minimum, local or global.
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When presenting a new method authors commonly illustrate the working of
their method and compare its performance with that of some other algorithms on
some test problems. In many cases the choice of test problems is quite random
with the only systematic selection being over different values ofn. Many of the
test problems often used in the literature are trivially easy to solve and some of
them are even unimodal and could thus be solved by applying a local optimization
method from a single starting point.

Of course the choice of test problems should be systematic (for constrained
problems see (Floudas and Pardalos 1990)) so that they represent different types
of problems ranging from easy to difficult to solve. The failure in making such a
choice may partly be caused by the lack of a suitable classification of problems
according to some complexity measure and partly by the fact that the features of
the test problems are not known.

This discussion shows that it would be important to be able to classify global
optimization problems in order to test methods more systematically. This can then
lead to a characterization of algorithms which is important in order to choose a
suitable method given a problem with known features. Also such a classification
could be the base for constructing an optimization tool that could characterize the
problem at hand and then choose a suitable set of methods to apply.

Choosing a suitable method from a set of methods implies that the methods
can be characterized and compared. We will therefore also address the problem of
comparing methods.

2. Problem features and solution techniques

We here discuss global optimization problem features and their contribution to
problem complexity. We also recognize different techniques that are used in global
optimization methods.

2.1. PROBLEM FEATURES

When solving (finding the global minimum of) a global optimization problem the
outcome is dependent on the complexity of the problem. We postulate that the
complexity is dependent on the following features of the problem:

• the sizep∗ of the region of attraction of the global minimum,
• the affordable number of function evaluationsNf ,
• embedded or isolated global minimum,
• the number of local minimizers.

The region of attractionS(xm) ⊂ A of a local minimizerxm is defined as the
largest region containingxm such that when starting an infinitely small step strictly
descending local minimization from any point inS(xm) then the minimizerxm will
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be found each time. The region of attraction of a minimumm is the union of the
regions of attraction of all minimizersx for whichf (x) = m.

If the region of attraction off ∗ is large then this region is easy to detect when
sampling inA and such a problem is of course easier to solve than a problem with
smaller such region.

The value of the expression(1−p∗)Nf is the chance that the region of attraction
of f ∗ is missed when samplingNf points at random inA. If the functionf is
cheap to evaluate thenNf is large and the probability that even a very small region
of attraction is missed becomes small. However, if only a small number of function
evaluations can be performed then the probability to miss the region of attraction
of the global minimum for smallp∗ is large.

Embedded global minimum means that there exist non-global minimizers near
a global minimizer, so that exploration (e.g. sampling) near these leads to detecting
better and better minima and eventually the global minimum. A simplified picture
of such a case is that these minima are at the surface of a bowl with the global
minimum at the bottom. If the global minimum is embedded this means that the
region of attraction off ∗ may be found by such exploration even if the size of the
region of attraction is very small. We say that the global minimum is isolated as
the opposite to being embedded.

The number of minimizers and the size of the region of attraction of the global
minimum are normally not independent of each other. One would expect that the
size is a decreasing function of the number of minimizers. However, it is an import-
ant feature on its own because local search will become increasingly ineffective for
an increasing number of local minimizers.

Of course there are other features which have an influence like the size ofA,
the dimensionalityn, and unique or several global minimizers. When formulating
a problem,A should be specified as small as possible because if on two domains
A ⊆ Ā, f has the same global minimizer then working with the smaller domain is
better. The wayA influences the complexity is explained by the following example.
Let the smallestA be the box [0,1]n. If insteadA equal [0,2]n is used then the
volume ofA grows with a factor 2n. Sampling in the larger box will then increase
1−p∗ to maximally 1−p∗/2n so this is reflected in the chance to miss the region of
attraction off ∗. The increase is maximal if the region of attraction is in the interior
of [0,1]n. Largern may mean smallerp∗ either because of more minima or larger
A. A problem with several global minimizers is of course harder if all minimizers
are to be found and may also affect efficiency because of convergence problems
for some methods.

2.2. SOLUTION TECHNIQUES

Global techniques, local techniques, and adaptive techniques are all used in global
optimization.
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Table 1. Problem classes and solution techniques

Problem features Solution techniques

Class Complexity (1− p∗)Nf Embeddedness #mins glob local adapt

U unimodal 0 none 1 (+) ++ld +
E1 easy small any few + +ld +
E2 small any many + +gd +
M1 moderate large embedded few + ++ld +
M2 large embedded many + ++gd +
D1 difficult large isolated few ++ +ld –

D2 large isolated many ++ +gd –

The global technique is responsible for exploring the whole area of interest
A and in this way ensures that a point in the region of attraction of the global
minimum is found.

The local technique is used to find better points in the vicinity of some (good)
point in order to improve the accuracy of a solution. In the case of an embedded
global minimum the local technique could also be responsible for finding better
minima near promising minima.

The effect of an explicit local technique can also be achieved in another way.
By an adaptive technique we mean that the global technique is gradually sampling
more points in the regions where good points have already been found. This tech-
nique is used in methods where no explicit local technique is used so that the
global technique gradually turns into a local technique. Another motive for using
adaptation is based on the assumption that the global minimum is embedded. If this
is the case then it is rewarding to focus the search on neighborhoods of promising
points.

Other techniques used are single working point techniques (like Simulated An-
nealing, SA (Dekkers and Aarts 1991)), working set techniques (Controlled Ran-
dom Search, CRS (Price 1987)), multistart, and clustering, just to mention a few.
These techniques are not generally applied but rather relate to some specific meth-
ods.

3. Problem classes and solution techniques

In Table 1 we present the relation between problems and solution techniques. There
are seven classes presented in increasing order of complexity.

In the technique part of the table+ means that the technique is usable,++
means that the main effort should be in using this technique. In the column for
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Table 2. Used test problems by classes

Class Function (1− p∗)1 #mins Reference

U Kowalik 0.00 1 (Jansson and Knüppel 1995)

Powell 0.00 1 (Jansson and Knüppel 1995)

E1 Branin 0.00 3 (Törn and Žilinskas 1989)

Goldprice 0.55 4 (Törn and Žilinskas 1989)

Shekel5 0.65 4 (Törn and Žilinskas 1989)

Shekel7 0.65 7 (Törn and Žilinskas 1989)

Shekel10 0.65 10 (Törn and Žilinskas 1989)

Hartman3 0.30 4 (Törn and Žilinskas 1989)

Hartman6 0.30 4 (Törn and Žilinskas 1989)

Hosaki 0.35 2 (Bekey and Ung 1974)

Si(B): P3 0.66 3 ? (Ali, Storey and Törn 1997)

E2 Levy10 0.15 1010 (Jansson and Knüppel 1995)

Shubert3 0.65 ≈ 53 (Dekkers and Aarts 1991)

Si(B): P4 0.89 ∞ ? (Ali, Storey and Törn 1997)

Si(B): P5 0.95 ∞ ? (Ali, Storey and Törn 1997)

M2 Griewank2 0.99 ≈ 500 (Törn and Žilinskas 1989)

Griewank10 0.93 O(103) (Törn and Žilinskas 1989)

Shubert5 0.95 ≈ 155 (Dekkers and Aarts 1991)

D2 Si(B): P6 .997 ∞ ? (Ali, Storey and Törn 1997)

the local technique the notationld means local descent and the notationgd means
global descent, i.e., local improvement for instance by sampling so that the local
technique may escape inferior minima.

For difficult problems where the global minimum is isolated, applying an adapt-
ive technique (concentration of the search in promising regions which have been
found) will in general increase the chance of missing the global minimum. This
occurs because new regions should continue to be explored; this fails to happen
when we use adaption.

Table 2 shows some examples of problem members of each class. For each
problem are given the number of minimizers, #mins, and the relative size of the
region of attraction of the global minimum,p∗ (actually(1− p∗)1, the probability
to miss the region of attraction of the global minimum by sampling one point at
random inA). The values in the column(1− p∗)1 have been obtained by applying
a local descent algorithm to 1000 points randomly distributed overA. For Si(B)
and Griewank 10000 points were used.
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It is not possible in general to specifyNf because it depends on the environment
in which the optimization takes place. Attributes of the environment, important
in this respect, are computing power and possible time constraints. However, for
1− p∗ 6 0.95 sampling just 100 points at random inA makes the chance to miss
the global minimum less than 0.0006, so for most problems above,(1−p∗)Nf (the
chance to miss), will be rather small in any application.

The characterization of the sample problems in Table 2 is partly based on ex-
periences made in solving global optimization problems with CRS techniques (Ali,
Törn and Viitanen 1997) and some other stochastic methods (Ali, Storey and Törn
1997). BecauseNf will increase as the computers become more powerful, prob-
lems may switch to lower complexity classes with time.

3.1. UNIMODAL PROBLEMS

Unimodal problems are local optimization problems and therefore actually no glo-
bal technique needs to be applied. The(+) in the column for the global technique
indicates the possibility to use several starting points in order to guarantee that
the local optimization method really converges to the global minimum. Problems
used as global optimization test problems belonging to this class are Powell, which
analytically can be proved to have only one minimizer, and Kowalik, which in
all our experiments was found to have a single minimizer. Possibly the unimodal
feature of these problems was not known when they were used. The only reason for
using local optimization problems as test problems for global optimization methods
is to find out how they manage to solve such problems. This can be important as it
is not generally known if the problem is multimodal or not.

3.2. EASY PROBLEMS

The easy problems are characterized by a small chance to miss the region of attrac-
tion of the global minimum. This means that either the region of attraction is large
or that enough points can be sampled in order for the chance to miss the region of
attraction to be small. For large regions of attraction the strategy could be to sample
a small number of global points uniformly inA and then to start local optimiza-
tions from some promising points. Most global optimization methods should work.
For few minimizers methods designed to find all local minimizers (e.g. clustering
techniques) could be used. There are many test problems belonging to this class,
the best known are the “standard test problems” Branin, Goldstein-Price, Shekel
5,7,10 and Hartman 3,6. The problems of Hosaki and Si(B): P3 also belong to this
class.

For problems with many minimizers global descent rather than local descent
should be used. Examples of problems belonging to this class are Levy10 and
Shubert3. Also for smaller regions of attraction of the global minimum more effort
has to be devoted to the global part.
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3.3. MODERATELY DIFFICULT PROBLEMS

There seems to be a lack of problems in the literature belonging to the classM1,
i.e., problems with embedded global minimum and few minima, with small region
of attraction of the global minimum. We therefore leave out the classM1 from
Table 2.

Moderately difficult problems are characterized by an embedded global min-
imum and a high probability of missing the region of attraction of the global
minimum (either because the region is very small or because the function is so
expensive to evaluate that the number of affordable function evaluations is small).
Embedded means that given a promising point (a point with relatively small func-
tion value) in the region of attraction of some local minimum, there will be regions
of attraction of even better local minima and of the global minimum nearby. This
means that an adaptive technique works well. The CRS method CRS(q, β) which
uses quadratic approximation for generating trial points accompanied by sampling
from theβ-distribution for local improvement (Ali, Törn and Viitanen 1997) could
be recommended.

The Griewank problems belong to this class. They have many local minimizers
with the global minimum in the origin and many other nearby. In our experiments
we found that the 2-dimensional problem is more difficult than the 10-dimensional.
This was not expected. We also note that the problems listed could very well be
classified as belonging to the classE2 because a very large number of function
evaluations can be performed on the powerful computers of today.

3.4. DIFFICULT PROBLEMS

We have not found problems in the literature belonging to the classD1, i.e., prob-
lems with isolated global minimum and few minima, with small region of attraction
of the global minimum. We have therefore left out the classD1 from Table 2.

The difficult problems are characterized by a large chance to miss and isolated
global minimum. This means that the detection of a point in the region of attraction
of the global minimum must totally rely on sampling inA. There is no reward in
using an adaptive technique for the global part because the global minimum is
isolated and thus adaptive sampling will increase the chance to miss the global
minimum. The number of minimizers could either be small or large and this will
affect which local technique is to be used. For a small number of minimizers it will
be effective to use a local descent method when a promising point is found by the
global technique. Here clustering techniques or other techniques which try to find
all local minimizers could be applied.

Many of these problems are probably unsolvable with affordable effort and one
can only hope to find a good local solution. Examples of difficult problems are
Many-body Problems (Ali, Storey and Törn 1997). There are three similar prob-
lems described in (Ali, Storey and Törn 1997). We give one of them, Si(B), as an
example here. These become increasingly difficult with increasingn because of
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the increasing number of minimizers and growing 1−p∗. Some of these (P3, P4)
are solvable by using some thousands of function evaluations, and could be char-
acterized as rather easy, others (P6, P7, ...) require several more times of function
evaluations for a serious solution effort and can be characterized as difficult.

4. Comparing methods

For comparing methods we propose that test problems should represent different
classes of problems, for instance Branin, Shekel5, Shubert3, Griewank, and Many-
body problems or other problems from classD.

For a method the outcome of a solution effort (the quality of the solution) is
dependent on the stopping condition used because this will determine how much
work is used to find the solution. We therefore touch upon the stopping problem
below.

Comparing methods is complicated by the fact that two goals are to be achieved:
high quality and small effort. How to compare methods properly in this two dimen-
sional goal space will also be discussed.

4.1. STOPPING CONDITIONS AND CONVERGENCE

Every method must use some stopping condition. Stopping conditions are some-
times based on theoretical convergence properties. Because a global optimization
problem generally cannot be solved for sure the convergence properties are at best
probabilistic which means that some method will find the global minimum with
a probability that approaches one as the algorithm runs on. Finite convergence is
dependent on that a point in the region of attraction of the global minimum is found
in a finite number of steps and that a local algorithm that successfully finds the
minimum is started from such a point. Even if a method converges in probability
it is not normally possible to estimate the probability that the global minimum is
found when the algorithm stops after a finite number of function evaluations. An
exception is multistart if we assume that the local technique is always successful
and we knowp∗ or a lower bound of it (Törn and Žilinskas 1989).

It is trivial to modify any method that can be made to run indefinitely to con-
verge with probability one by adding some random sampling element that is always
applied but possibly with a probability decreasing over time in order not to degrade
the efficiency of the method. As an example consider the CRS methods which do
not have any theoretical convergence properties. Add the following to the CRS
procedure: “Each time the number of function evaluations reachesN0 (let initially
N0 be e.g. 10Nf ), sample a point at random in the search region, update the
working set, and doubleN0”. For parameter values making CRS to run forever
this modified version will converge to the global minimum with probability one.
However, the modified CRS method and the original CRS method are identical in
any application.
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This means that knowing that a method has theoretical convergence properties
in a probabilistic sense is not enough from a practical point of view. Some other ad-
ditional measures are needed. One such measure could be the number of uniformly
distributed points sampled inA during the solution process. From this the chance
to miss the region of attraction of the global minimum, under some assumption on
the lower bound of its size, could then be calculated.

4.2. EMPIRICAL COMPARISON

Methods are normally compared on their efforts needed to find the global minimum
(e.g. number of function evaluationsNf or cpu time). A method is considered
better than another method if it solves the problem with fewer function evaluations
or in less cpu time.

When making empirical comparisons between methods it is important to realize
that a probabilistic global optimization methodM applied to a problemP is a
mapping(M,P ) → (E, q), whereE is the effort applied in the solution process
and q ∈ [0,1] is the probability that the global minimum is found. The effort
could either be measured as cpu time and/or as the number of function evaluations
Nf . This means that when comparing two methodsM1 andM2 for a problemP the
pairs(E1, q1) and(E2, q2) are to be compared. If then either one pair dominates the
other orq1 = q2 orE1 = E2 such a comparison is possible otherwise not. The pair
(E1, q1) dominates(E2, q2) if they are not equal andE1 6 E2 andq1 > q2. In order
to compare two methods the easiest way is thus to fixE and apply the methods
repeatedly in solving the same problem, calculating the averages forq1 and q2

and comparing these. This should then be done for a range ofE. Alternatively one
could fixq and try to find such parameters for the methods thatq is achieved on the
average and then compare the effortsE. Whichever of these approaches is chosen
a lot of experimenting is needed in order to find parameter values that makes the
methods comparable.

In conclusion we think that comparisons of methods reported in the literature
are normally not fair in the way explained above. Some are rather heuristic based
on incompatible stopping conditions giving an outcome which as a rule seems to
be in favor of the new method.

5. Elements of a global optimization tool

Given a global optimization problem the features of the problem are usually not
known. What strategy should then be applied to solve the problem? We think that
a characterization of the problem is part of the solution and therefore the solution
strategy should be to apply methods that would reveal the features of the problem.
We next address exploring the features of a given problem, see Table 1.

The method to use for finding #mins is multistart, i.e., starting a local minim-
ization algorithm fromN randomly sampled starting points inA. If most of the
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minimizations arrive at different solutions then many minimizers can be expected,
otherwise few. Other information obtained is the variation off (x) over A and
the effort needed (function evaluations) for local minimization. Further the afford-
able number of function evaluations in solving the problem can be estimated. We
can of course not state anything about the embeddedness of the global minimum.
By calculating the distances from the best minimizer to nearby minimizers some
indication of the embeddedness of the best minimum found can be obtained.

The featurep∗ can of course not be estimated because this means that we know
for sure we have solved the problem which might not normally be possible to
assure. One possible way to proceed is to make some assumption about the lower
limit of p∗. Such an assumption could be based on practical information, i.e., the
usefulness of a solution might be dependent on whether the solution is stable. By
stable we mean that variations in the decision variablex inside the tolerance lead
to small variations in the function values.

Solving an unknown global optimization problem in practice is of course not an
one shot effort with efficiency in the driving seat. Rather a lot of experimenting is
undertaken until confidence in the solution (within affordable effort) is obtained.
We are here advocating for some systematical approach in this experimenting. Our
recommendation is:
1. SampleN points uniformly inA and evaluatef giving Pi = (xi, fi), i ∈
{1, N}. Recordfmin, fmax.

2. Start local minimization from each point and record the minima, the relative
sizes of their regions of attraction, their minimizers, and the embeddedness of
the best minimum.

3. Print a characterization report on the collected information.
4. Based on analysis of the report choose a suitable global optimization method

(methods) and tailor to meet characteristics by specifying parameters and make
a run. Based on results adapt and run again until satisfied.

The methods to include for solving global optimization problems should allow
the user to adapt the mode of exploration to what he knows or what he learns
about the problem features, e.g. switch between local and global, and utilize ad-
aptive techniques if deemed favorable. It is not possible to here give a definite
recommendation on which methods to use, we just mention one which has proved
usable.

A possible candidate to include in such a pool could be a recent version of
Price’s Controlled Random Search method, CRS(q, β) (Ali, Törn and Viitanen
1997). This method does not use a local optimizer, so it can be used even if there are
many minimizers and will help in finding embedded global minima. The method, as
all CRS methods, also has a very natural and easy to understand stopping condition.
The method was found competitive in a comparison of several global optimization
methods (Ali, Storey and Törn 1997).

Based on the ideas presented above, it should be possible to construct a global
optimization tool that would assist in obtaining a solution by offering several global
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optimization methods and also an overall strategy in solving global optimization
problems.
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